Abstract
AimsCardiovascular disease (CVD) is the leading cause of excess mortality in chronic kidney disease (CKD) and dialysis patients (DP) who have higher prevalence of left ventricular hypertrophy (LVH), the strongest predictor of CV events. Rho kinase (ROCK) activation is linked in hypertensive patients to cardiac remodeling while ROCK inhibition suppresses cardiomyocyte hypertrophy and, in a human clinical condition opposite to hypertension, its downregulation associates with lack of CV remodeling. Information on ROCK activation-LVH link in CKD and DP is lacking. Materials and methodsMononuclear cells (PBMCs) MYPT-1 phosphorylation, a marker of ROCK activity, and the effect of fasudil, a ROCK inhibitor, on MYPT-1 phosphorylation were assessed in 23 DPs, 13 stage 3–4 CKD and 36 healthy subjects (HS) by Western blot. LV mass was assessed by M-mode echocardiography. Key findingsDP and CKD had higher MYPT-1 phosphorylation compared to HS (p<0.001 and p=0.003). Fasudil (500 and 1000μM) dose dependently reduced MYPT-1 phosphorylation in DP (p<0.01). DP had higher LV mass than CKD (p<0.001). MYPT-1 phosphorylation was higher in patients with LVH (p=0.009) and correlated with LV mass both in DP and CKD with LVH (p<0.001 and p=0.006). SignificanceIn DP and CKD, ROCK activity tracks with LVH. This ROCK activation-LVH link provided in these CVD high-risk patients along with similar findings in hypertensive patients and added to opposite findings in a human model opposite to hypertension and in type 2 diabetic patients, identify ROCK activation as a potential LVH marker and provide further rationale for ROCK activation inhibition as target of therapy in CVD high-risk patients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.