Abstract
Loss of the protein kinase Sch9p increases both the chronological life span (CLS) and the replicative life span (RLS) of Saccharomyces cerevisiae by mimicking calorie restriction, but the physiological consequences of SCH9 deletion are poorly understood. By transcriptional profiling of an sch9Delta mutant, we show that mitochondrial electron transport chain genes are upregulated. Accordingly, protein levels of electron transport chain subunits are increased and the oxygen consumption rate is enhanced in the sch9Delta mutant. Deletion of HAP4 and CYT1, both of which are essential for respiration, revert the sch9Delta mutant respiratory rate back to a lower-than-wild-type level. These alterations of the electron transport chain almost completely blocked CLS extension by the sch9Delta mutation but had a minor impact on the RLS. SCH9 thus negatively regulates the CLS and RLS through inhibition of respiratory genes, but a large part of its action on life span seems to be respiration independent and might involve increased resistance to stress. Considering that TOR1 deletion also increases respiration and that Sch9p is a direct target of TOR signaling, we propose that SCH9 is one of the major effectors of TOR repression of respiratory activity in glucose grown cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.