Abstract

Inward-rectifying potassium channels in plant cells provide important mechanisms for low-affinity K+ uptake and membrane potential control in specific cell types, including guard cells, pulvinus cells, aleurone cells and root hair cells. K+ channel blockers are potent tools for studying the physiological functions and structural properties of K+ channels. In the present study the structural and biophysical mechanisms of Cs+ and TEA+ block of a cloned Arabidopsis inward-rectifying K+ channel (KAT1) were analyzed. Effects of the channel blockers Cs+ and TEA+ were characterized both extracellularly and intracellularly. Both external Cs+ and TEA+ block KAT1 currents. A mutant of KAT1 ("m2KAT1"; H267T, E269V) was produced by site-directed mutagenesis of two amino acid residues in the C-terminal portion of the putative pore (P) domain. This mutant channel was blocked less by external Cs+ and TEA+ than the wild-type K+ channel. Internal TEA+ and Cs+ did not significantly block either m2KAT1 or KAT1 channels. Other properties, such as cation selectivity, voltage-dependence and proton activation did not show large changes between m2KAT1 and KAT1, demonstrating the specificity of the introduced mutations. These data suggest that the amino acid positions mutated in the inward-rectifying K+ channel, KAT1, are accessible to external blockers and may be located on the external side of the membrane, as has been suggested for outward-rectifying K+ channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.