Abstract

The relation between copper tolerance and the sensitivity of plants with respect to the effect of copper on the plasmalemma of root cells was studied using plants from one copper sensitive and two copper tolerant populations of Silene cucubalus Wib. In each population, the external copper concentration needed to induce ion leakage (a measure of damage to the permeability barrier) was similar to the highest no‐effect‐concentration of copper for root growth in that population. At higher concentrations, the degree of root growth inhibition paralleled the rate of ion leakage, the degree of trypan blue staining (a measure of plasmalemma integrity) and the accumulation of lipid peroxidation products. The amount of copper taken up by the plants was inversely related to their level of copper tolerance. Compared to copper sensitive plants, copper tolerant plants showed no increased resistance to either the sulfhydryl reagent N‐ethylmaleimide or the free radical‐producing compound cumene hydroperoxide.These results indicate that damage to the permeability barrier of root cells constitutes the primary effect of copper toxicity in both sensitive and tolerant plants, and that copper tolerance is coupled to the ability of the plants to prevent such damage. This ability might depend on exclusion of copper by the root cell plasmalemma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.