Abstract

The ability of forskolin and isoproterenol to inhibit the contractile action of the muscarinic agonist, oxotremorine-M, was investigated in smooth muscle from wild-type and M(2) muscarinic receptor knockout mice. Forskolin (5.0 micro M) caused a significant reduction in the contractile activity of oxotremorine-M in ileum, trachea, and urinary bladder from both wild-type and M(2) muscarinic receptor knockout mice. This reduction in contractile activity was characterized by decreases in potency or maximal response, but not always both. Similar results were obtained with isoproterenol (1.0 micro M). The relaxant effects of forskolin in ileum, trachea, and urinary bladder from M(2) receptor knockout mice were approximately 3- to 9-fold greater than those observed in the same tissues from wild-type mice. Similar results were obtained with isoproterenol in ileum and urinary bladder, although the differences between wild-type and M(2) receptor knockout tissues were less than those observed with forskolin. In contrast, there was no significant difference between the relaxant effect of isoproterenol in trachea from wild-type and M(2) receptor knockout mice. In contrast to the results observed with oxotremorine-M as the contractile agent, forskolin and isoproterenol did not exhibit greater relaxant activity against KCl-induced contractions in M(2) receptor knockout mice compared with wild-type mice. These results suggest that a component of the contractile response to muscarinic agonists in smooth muscle involves an M(2) muscarinic receptor-mediated inhibition of the relaxant effects of agents that increase cAMP levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.