Abstract

An association between increased relative abundance of specific bacterial taxa in the intestinal microbiota and bacteremia has been reported in some high-risk patient populations. We collected weekly rectal swab samples from patients at 1 long-term acute care hospital (LTACH) in Chicago from May 2015 to May 2016. Samples positive for Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) by polymerase chain reaction and culture underwent 16S rRNA gene sequence analysis; relative abundance of the operational taxonomic unit containing KPC-Kp was determined. Receiver operator characteristic (ROC) curves were constructed using results from the sample with highest relative abundance of KPC-Kp from each patient admission, excluding samples collected after KPC-Kp bacteremia. Cox regression analysis was performed to evaluate risk factors associated with time to achieve KPC-Kp relative abundance thresholds calculated by ROC curve analysis. We collected 2319 samples from 562 admissions (506 patients); KPC-Kp colonization was detected in 255 (45.4%) admissions and KPC-Kp bacteremia in 11 (4.3%). A relative abundance cutoff of 22% predicted KPC-Kp bacteremia with sensitivity 73%, specificity 72%, and relative risk 4.2 (P = .01). In a multivariable Cox regression model adjusted for age, Charlson comorbidity index, and medical devices, carbapenem receipt was associated with achieving the 22% relative abundance threshold (P = .044). Carbapenem receipt was associated with increased hazard for high relative abundance of KPC-Kp in the gut microbiota. Increased relative abundance of KPC-Kp was associated with KPC-Kp bacteremia. Whether bacteremia arose directly from bacterial translocation or indirectly from skin contamination followed by bloodstream invasion remains to be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call