Abstract

Atherosclerosis and ensuing cardiovascular disease are major causes of death with insufficient treatment options. In search for pathomechanisms of atherosclerosis, we investigated the impact of the B2 bradykinin receptor, Bdkrb2, on atherosclerotic lesion formation, because to date it is not clear whether the B2 bradykinin receptor is atheroprotective or atherogenic. As a model of atherosclerosis, we used hypercholesterolemic ApoE-deficient (apolipoprotein E-deficient) mice, which develop atherosclerotic lesions in the aorta with increasing age. The role of Bdkrb2 in atherosclerosis was studied in ApoE-deficient mice, which were either Bdkrb2-deficient, or had moderately increased aortic B2 bradykinin receptor protein levels induced by transgenic BDKRB2 expression under control of the ubiquitous CMV promoter. We found that Bdkrb2 deficiency led to a significantly decreased atherosclerotic plaque area whereas transgenic BDKRB2 expression enhanced atherosclerotic lesion formation in the aorta of ApoE-deficient mice at an age of 8 months. Concomitantly, the aortic content of reactive oxygen species (ROS) was higher in BDKRB2-expressing mice whereas Bdkrb2 deficiency decreased aortic ROS levels of ApoE-deficient mice. In addition, aortic nitrate as a marker of nitric oxide activity and the endothelial nitric oxide synthase (eNOS) co-factor, tetrahydrobiopterin (BH4) were reduced in BDKRB2-expressing ApoE-deficient mice. The decreased aortic BH4 content could be a consequence of increased ROS generation and down-regulated aortic expression of the BH4-synthesizing enzyme, Gch1 (GTP cyclohydrolase 1). In agreement with a causal involvement of decreased BH4 levels in the atherogenic function of BDKRB2, we found that treatment with the BH4 analog, sapropterin, significantly retarded atherosclerotic plaque formation in BDKRB2-expressing ApoE-deficient mice. Together our data show that the B2 bradykinin receptor is atherogenic, and the atherosclerosis-promoting function of BDKRB2 is partially caused by decreased aortic BH4 levels, which could account for eNOS uncoupling and further enhancement of ROS generation.

Highlights

  • Atherosclerosis and cardiovascular disease are leading causes of death worldwide [1, 2]

  • Because the genetic background has a strong influence on the atherosclerotic phenotype of apolipoprotein E (ApoE)–/– mice [26], all groups of transgenic mice used in our study had identical B6 background

  • We investigated the impact of the B2 bradykinin receptor on atherosclerotic lesion formation in hypercholesterolemic ApoE–/– mice as a model of atherosclerosis

Read more

Summary

Introduction

Atherosclerosis and cardiovascular disease are leading causes of death worldwide [1, 2]. We investigated the role of the B2 bradykinin receptor (BDKRB2) in atherosclerotic lesion formation. To date it is not known whether BDKRB2 is atheroprotective or atherogenic. Due to the blood pressure-lowering and nitric oxide- (NO)-generating activity, the B2 bradykinin receptor is considered to exert cardioprotection [9, 10]. This cardioprotective potential of B2 bradykinin receptor stimulation by the agonist bradykinin and related kinins of the kinin-kallikrein system is exploited therapeutically with ACE (angiotensin-converting enzyme) inhibitors. Hypercholesterolemia and atherosclerosis are known to cause endothelial dysfunction with concomitant uncoupling of endothelial nitric oxide synthase (eNOS), which generates atherosclerosis-promoting reactive oxygen species (ROS) instead of atheroprotective NO [17,18,19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call