Abstract

Liver cancer is one of the major causes of cancer death worldwide, incurring high mortality and a significant financial burden on the healthcare system. Abnormal RNA-binding proteins (RBPs) have been found to be associated with carcinogenesis in liver cancer. Among these, RNA-binding motif protein 12 (RBM12) is located in the exon junction complex (EJC). The goal of this study was to determine what role RBM12 plays in hepatocellular carcinoma (HCC) from a biological perspective. The Tumor IMmune Estimation Resource (TIMER) and the Human Protein Atlas database were used to examine the expression level of RBM12, with the UALCAN and Gene Expression Profiling Interactive Analysis (GEPIA) databases used to investigate the relationship between RBM12 and other noteworthy clinical features. RBM12 expression in cells and tissue samples was detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. The functional network of RBM12 in HCC was studied using LinkedOmics and gene set enrichment analysis (GSEA), while the effects of hypomethylation on the expression of RBM12 in HCC was investigated using methylation databases. Finally, we used TIMER and CIBERSORT to investigate the relationship between immune cell infiltration and RBM12 in HCC. RBM12 is highly elevated in HCC tissues and cells, and it can be used to predict the prognosis of patients with HCC. Analysis with LinkedOmics and GSEA revealed RBM12 to be closely linked with tumor progression. Furthermore, hypomethylation was linked to an increase in RBM12 expression in HCC, while RBM12 was associated with immune cell infiltration. This study shows that an elevated level of RBM12 in HCC indicates a poor patient prognosis. Furthermore, according to LinkedOmics and GSEA analyses, RBM12 was implicated in the most important hallmark pathways. Our findings suggest that RBM12 overexpression is caused by hypomethylation and that RBM12 plays a key role in liver cancer tumor immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.