Abstract

Orthodox seed serves as easily accessible model to study desiccation-sensitivity in plant tissues because once they undergo germination, theybecome sensitive to desiccation imposed injuries. In the proposed study, effects of rate of drying on the viability, electrolyte leakage, superoxide accumulation, lipid-protein oxidation and antioxidant enzymes were explored in excised radicles of Cicer arietinum L. under dehydration and wet storage. For both the drying conditions, desiccation could be explained by exponential and inverse functions. Under rapid drying tissue viability as scored by germination efficiency and tetrazolium staining remained 100% all through the analysis (24h) but declined remarkably after 0.30gg(-1) fresh mass water content (4days) under slow drying. Moreover, precipitous fall in tissue viability was observed after 2weeks of wet storage. Rapid drying was also accompanied with limited amounts of electrolyte leakage, superoxide radical, malondialdehyde and protein hydroperoxide, together with enhanced level of protein. Additionally, activities of both superoxide dismutase and ascorbate peroxidase were increased in rapidly dried radicles, but guaiacol peroxidase was declined. In contrary, above referred biomarkers were observed to perform either inversely or poorly during slow drying and wet storage suggesting that above documented alterations might be the resultant of ageing and not desiccation. Gathered data demonstrated that increased drying lowers the critical water content for tissue survival and also reduces the risk of damage resulting from aqueous-based deleterious reactions. Additionally, it also showed that growing radicles are a popular model to explore desiccation-sensitivity in plant tissues and/or seeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.