Abstract

The power conversion efficiency of quantum-dot-sensitized solar cells (QDSSCs) hinges on interfacial charge transfer. Increasing quantum dot (QD) loading on the TiO2 anode has been proposed as a means to block recombination of electrons in the TiO2 to the hole transport material; however, it is not known whether a corresponding increase in QD-mediated recombination processes might lead to an overall higher rate of recombination. In this work, a 3-fold increase in PbS QD loading was achieved by the addition of an aqueous base to negatively charge the TiO2 surface during Pb cation deposition. Increased QD loading improved QDSSC device efficiencies through both increased light absorption and an overall reduction in recombination. Unexpectedly, we also found increased QD size had the detrimental effect of increasing recombination. Kinetic modeling of the effect of QD size on interfacial charge transfer processes provided qualitative agreement with the observed variation in recombination lifetimes. These results demonstrate a robust method of improving QD loading, identify the specific mechanisms by which increased QD deposition impacts device performance, and provide a framework for future efforts optimizing the device architecture of QDSSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.