Abstract

Normal mammary epithelial cells are rapidly induced to G(1) arrest by the widely expressed cytokine, transforming growth factor beta (TGF-beta1). Studies in established breast cancer cell lines that express the estrogen receptor alpha (ERalpha) have demonstrated loss of this responsiveness. This inverse correlation suggests interpathway signaling important to cell growth and regulation. The adenocarcinoma breast cell line BT474, which was not growth arrested by TGF-beta1, was used as a model of estrogen-inducible growth to explore interpathway crosstalk. Although BT474 cells were not growth-arrested by TGF-beta1 as determined by flow cytometry analysis and 5'-bromo-3'-deoxyuridine incorporation into DNA, estrogen receptor protein levels were attenuated by 100 pM TGF-beta1 after 6 h. This decrease in ERalpha reached 50% of untreated control levels by 24 h of treatment and was further supported by a 50% decrease in estrogen-inducible DNA synthesis. Inspection of ERalpha transcripts suggested that this decrease was primarily the result of altered ERalpha protein stability or availability. Use of the proteasome inhibitor, MG132, abolished all effects on ERalpha by TGF-beta1. Collectively, this data supports a role for TGF-beta1 in regulating the growth of otherwise insensitive breast cancer cells through modulation of ERalpha stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.