Abstract

Studies of transcriptome profiles have provided new insights into mechanisms underlying the development of hypertension. Cell type heterogeneity in tissue samples, however, has been a significant hindrance in these studies. We performed a transcriptome analysis in medullary thick ascending limbs of the loop of Henle isolated from Dahl salt-sensitive rats. Genes differentially expressed between Dahl salt-sensitive rats and salt-insensitive consomic SS.13(BN) rats on either 0.4% or 7 days of 8.0% NaCl diet (n=4) were highly enriched for genes located on chromosome 13, the chromosome substituted in the SS.13(BN) rat. A pathway involving cell proliferation and cell cycle regulation was identified as one of the most highly ranked pathways based on differentially expressed genes and by a Bayesian model analysis. Immunofluorescent analysis indicated that just 1 week of a high-salt diet resulted in a severalfold increase in proliferative medullary thick ascending limb cells in both rat strains, and that Dahl salt-sensitive rats exhibited a significantly greater proportion of medullary thick ascending limb cells in a proliferative state than in SS.13(BN) rats (15.0±1.4% versus 10.1±0.6%; n=7-9; P<0.05). The total number of cells per medullary thick ascending limb section analyzed was not different between the 2 strains. The study revealed alterations in regulatory pathways in Dahl salt-sensitive rats in tissues highly enriched for a single cell type, leading to the unexpected finding of a greater increase in the number of proliferative medullary thick ascending limb cells in Dahl salt-sensitive rats on a high-salt diet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.