Abstract
Prokineticin 2 (PROK2) is an inflammatory cytokine-like molecule expressed predominantly by macrophages and neutrophils infiltrating sites of tissue damage. Given the established role of prokineticin signaling on gastrointestinal function, we have explored Prok2 gene expression in inflammatory conditions of the gastrointestinal tract and assessed the possible consequences on gut physiology. Prokineticin expression was examined in normal and colitic tissues using qPCR and immunohistochemistry. Functional responses to PROK2 were studied using calcium imaging and a novel antagonist, Compound 3, used to determine the role of PROK2 and prokineticin receptors in inflammatory visceral pain and ion transport. Prok2 gene expression was up-regulated in biopsy samples from ulcerative colitis patients, and similar elevations were observed in rodent models of inflammatory colitis. Prokineticin receptor 1 (PKR1) was localized to the enteric neurons and extrinsic sensory neurons, whereas Pkr2 expression was restricted to sensory ganglia. In rats, PROK2-increased intracellular calcium levels in cultured enteric and dorsal root ganglia neurons, which was blocked by Compound 3. Moreover, PROK2 acting at prokineticin receptors stimulated intrinsic neuronally mediated ion transport in rat ileal mucosa. In vivo, Compound 3 reversed intracolonic mustard oil-induced referred allodynia and TNBS-induced visceral hypersensitivity, but not non-inflammatory, stress-induced visceral pain. Elevated Prok2 levels, as a consequence of gastrointestinal tract inflammation, induce visceral pain via prokineticin receptors. This observation, together with the finding that PROK2 can modulate intestinal ion transport, raises the possibility that inhibitors of PROK2 signaling may have clinical utility in gastrointestinal disorders, such as irritable bowel syndrome and inflammatory bowel disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.