Abstract

In humans, arginase I (AI)-deficiency results in hyperargininemia, a metabolic disorder with symptoms of progressive neurological and intellectual impairment, spasticity, persistent growth retardation, and episodic hyperammonemia. A deficiency of arginase II (AII) has never been detected and the clinical disorder, if any, associated with its deficiency has not been defined. Since the spasticity and paucity of hyperammonemic crises seen in human AI-deficient patients are not features of the other urea cycle disorders, the likelihood of ammonia as the main neuropathogenic agent becomes extremely low, and the modest elevations of arginine seen in the brains of our mouse model of hyperargininemia make it an unlikely candidate as well. Specific guanidino compounds, direct or indirect metabolites of arginine, are elevated in the blood of patients with uremia. Other guanidino compounds are also increased in plasma and cerebrospinal fluid of hyperargininemic patients making them plausible as neurotoxins in these disorders. We analyzed several guanidino compounds in our arginase single and double knockout animals and found that α-keto-δ-guanidinovaleric acid, α- N-acetylarginine, and argininic acid were increased in the brain tissue from the AI knockout and double knockout animals. Several compounds were also increased in the plasma, liver, and kidneys. This is the first time that several of the guanidino compounds have been shown to be elevated in the brain tissue of an arginase-deficient mammal, and it further supports their possible role as the neuropathogenic agents responsible for the complications seen in arginase deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.