Abstract

Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a 13C-CO2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived 13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts) of the recently assimilated 13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of 13C enrichment in 6-species mixtures, while 13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of 13C in the respired CO2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of 13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased community level productivity in grassland systems.

Highlights

  • Primary production often increases with plant species richness, as demonstrated in a number of biodiversity experiments [1], [2]

  • We found that the net effect differed between species (F5,15 = 31.8, P,0.0001, N = 4), with A. odoratum, T. repens and L. corniculatus each contributing approximately one third (10 g per mesocosm) to the higher yield (Fig. 1B)

  • We examined how intraspecific variation in shortterm C translocation in grassland plant species is affected by being grown in mixed communities, and how this contributes to overyielding

Read more

Summary

Introduction

Primary production often increases with plant species richness, as demonstrated in a number of biodiversity experiments [1], [2]. It is generally recognised that legumes provide an additional nitrogen (N) input to soil by N2-fixation from the atmosphere This provides legumes with a complementary N source as compared to non-legumes, and the subsequent decomposition of the N-rich roots enables higher productivity of non-legume species present within the plant community [10], [11], [12]. This in turn may benefit legume species through community level complementarity feedbacks to nutrient use efficiency, but the mechanisms involved remain poorly resolved

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.