Abstract

BackgroundPediatric supracondylar humerus fractures are the most common elbow fractures seen in children, and account for 16 % of all pediatric fractures. Closed reduction and percutaneous pin fixation is the current treatment technique of choice for displaced supracondylar fractures of the distal humerus in children. The purpose of this study was to determine whether pin diameter affects the torsional strength of supracondylar humerus fractures treated by closed reduction and pin fixation.MethodsPediatric sawbone humeri simulating a Gartland type III fracture were utilized. Four different pin configurations were compared. Specimens were subjected to a torsional load producing internal rotation of the distal fragment. The stability provided by 1.25- and 1.6-mm pins was compared.ResultsThe amount of torque required to produce 15° and 25° of rotation was greater using larger diameter pins in all models tested. The two lateral and one medial large pin (1.6 mm) configuration required the highest amount of torque to produce both 15° and 25° of rotation.ConclusionsIn a synthetic pediatric humerus model of supracondylar humerus fractures, larger diameter pins (1.6 mm) provided increased stability compared with small diameter pins (1.25 mm). Fixation using larger diameter pins created a stronger construct and improved the strength of fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.