Abstract

Increasing evidence indicates that ezrin/radixin/moesin (ERM) proteins may play a critical role in cell proliferation. This study examined the role of ERM proteins in proliferation of fibroblast-like synoviocytes (FLS) from patients with RA. Synovial tissues (STs) were obtained from 18 RA and 6 OA patients. The expression of ERM and its phosphorylated proteins in cultured FLS and ST was assessed by western blots or IF staining. Small interference RNA (siRNA)-mediated ERM knockdown was used to inhibit phosphorylation of ERM. Proliferation of FLS was measured by bromodeoxyuridine (BrdU) incorporation into cell DNA and by PCNA immunoblotting. Our study showed that increased phosphorylation of ERM proteins was found in ST and FLS from patients with RA as compared with OA patients and non-arthritis controls. Treatment with TNF-α, IL-1β or PDGF-induced phosphorylation of ERM proteins in dose- and time-dependent manner by RA FLS, but did not affect the expression of total ERM protein. Rho kinase and p38MAPK signal pathways were involved in TNF-α-induced ERM phosphorylation. We further showed that inhibition of ERM phosphorylation by siRNA-mediated ERM knockdown suppressed TNF-α- or IL-1β-induced BrdU incorporation and PCNA expression in RA FLS. This study provides the novel evidence that increased phosphorylation of ERM proteins may contribute to proliferation of RA FLS, suggesting that specific inhibition of ERM phosphorylation may be a new therapeutic approach for RA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call