Abstract

ObjectiveThalamic tissue damage in multiple sclerosis (MS) follows a ‘surface-in’ gradient from the ventricular surface. The clinical consequences of this gradient are not completely understood. Using quantitative gradient-recalled echo (qGRE) MRI, we evaluated a periventricular thalamic gradient of tissue integrity in MS and its relationship with clinical variables. MethodsStructural and qGRE MRI scans were acquired for a cohort of MS patients and healthy controls (HC). qGRE-derived R2t* values were used as a measure of tissue integrity. Thalamic segmentations were divided into 1-mm concentric bands radiating from the ventricular surface, excluding the CSF-adjacent band. Median R2t* values within these bands were used to calculate the periventricular thalamic gradient. ResultsWe included 44 MS patients and 17 HC. R2t* increased slightly with distance from the ventricular surface in HC. MS patients had a steeper periventricular thalamic gradient compared to HC (mean slope 0.55 vs. 0.36; p < 0.001), which correlated with longer disease duration (β = 0.001 /year; p = 0.027) and higher Expanded Disability Status Scale (EDSS) score (β = 0.07 /EDSS point; p = 0.019). Left and right thalamus were symmetrically affected. ConclusionsWe detected an increased thalamic gradient in MS in vivo using qGRE MRI, which correlated with disease duration and greater clinical disability. These findings further support the ‘surface-in’ pathology hypothesis in MS and suggest a CSF-mediated process given symmetric bi-thalamic involvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.