Abstract

The authors conducted a biomechanical study to evaluate pedicle screw pullout strength in osteoporotic cadaveric spines. Nonaugmented hemivertebrae were compared with pressurized polymethylmethacrylate (PMMA)-augmented hemivertebrae. Six formalin-fixed cadaveric thoracolumbar spines at least two standard deviations below the mean bone mineral density (BMD) for age were obtained. Radiographic and BMD studies were correlated to grades I, II, and III osteoporosis according to the Jekei scale. Each of the 21 vertebrae underwent fluoroscopic placement of 6-mm transpedicular screws with each hemivertebra serving as the control for the contralateral PMMA-augmented hemivertebra. Pedicle screws were then evaluated for biomechanical axial pullout resistance. Augmented hemivertebrae axial pullout forces were increased (p = 0.0005). The mean increase in pullout force was 181% for Grade I, 206% for Grade II, and 213% for Grade III osteoporotic spines. Augmented Grade I osteoporotic spines demonstrated axial pullout forces near those levels reported in the literature for nonosteoporotic specimens. Augmented Grade II osteoporotic specimens demonstrated increases to levels found in nonaugmented vertebrae with low-normal BMD. Augmented Grade III osteoporotic specimens had increases to levels equal to those found in nonaugmented Grade I vertebrae. Augmentation of osteoporotic vertebrae in PMMA-assisted vertebroplasty can significantly increase pedicle screw pullout forces to levels exceeding the strength of cortical bone. The maximum attainable force appears to be twice the pullout force of the nonaugmented pedicle screw for each osteoporotic grade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call