Abstract

Most whitefly-transmitted geminiviruses possess bipartite DNA genomes, and this feature may facilitate viral evolution through pseudorecombination and/or recombination. To test this hypothesis, the DNA-A and DNA-B components of the geminiviruses bean dwarf mosaic virus (BDMV) and tomato mottle virus (ToMoV) were exchanged, and the resultant pseudorecombinants were serially passaged through plants. Both pseudorecombinants were infectious in Nicotiana benthamiana but induced attenuated symptoms and had reduced DNA-B levels. Serial passage experiments revealed that the BDMV DNA-A plus ToMoV DNA-B pseudorecombinant could not be maintained beyond three passages. In contrast, the ToMoV DNA-A plus BDMV DNA-B pseudorecombinant was maintained during serial passage through N. benthamiana and Phaseolus vulgaris and, after three to five passages, became highly pathogenic. Furthermore, the increased pathogenicity of this pseudorecombinant was consistently associated with an increased level of DNA-B, which eventuated in equivalent levels of both components. Sequence analysis of the DNA-B component of the more pathogenic pseudorecombinant revealed that intermolecular recombination had taken place in which most of the BDMV DNA-B common region was replaced with the ToMoV DNA-A common region. This recombinant DNA-B component, which contained the ToMoV origin of replication, was the predominant DNA-B component associated with the more pathogenic pseudorecombinant. These results provide the first demonstration of recombination between distinct bipartite geminiviruses and establish that the bipartite genome can facilitate viral evolution through pseudorecombination and intermolecular recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.