Abstract
Emerging evidence has suggested the detrimental role of oxidative stress in aggravating ischemia and reperfusion (IR) injury in diabetic livers. Interplay between oxidative stress and mitophagy has been shown. However, the role and mechanism of mitophagy in regulating oxidative stress and IR injury in diabetic livers remain unclear. Wild-type and db/db (DB) mice were subjected to a partial warm liver IR model. Liver injury, oxidative stress, mitophagy and related molecular pathways were analyzed. Here, we found that increased liver IR injury was observed in DB mice, as evidenced by higher levels of serum alanine aminotransferase and serum aspartate, worsened liver architecture damage and more hepatocellular death. DB mice also showed increased mitochondrial oxidative stress. Mitochondrial reactive oxygen species scavenge alleviated liver IR injury in DB mice. Mechanistic analysis showed that 5' adenosine monophosphate-activated protein kinase-mediated mitophagy was suppressed in DB mice post-IR. Pharmacological activation of 5' adenosine monophosphate-activated protein kinase by its agonist effectively restored mitophagy activation, leading to decreased mitochondrial oxidative stress and attenuated liver IR injury in DB mice. Our findings showed that diabetes increased oxidative stress to exacerbate liver IR injury by impairing 5' adenosine monophosphate-activated protein kinase-mediated mitophagy. Strategies targeting oxidative stress and mitophagy might provide a promising approach to ameliorate liver IR injury in diabetes patients.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.