Abstract

Protein kinase (PK) C-zeta is implicated in the control of colonic epithelial cell proliferation in vitro. However, less is known about its physiological role in vivo. Using the transmissible murine colonic hyperplasia (TMCH) model, we determined its expression, subcellular localization, and kinase activity during native crypt hyperproliferation. Enhanced mitosis was associated with increased cellular 72-kDa holoenzyme (PKC-zeta, 3.2-fold), 48-kDa catalytic subunit (PKM-zeta, 3- to 9-fold), and 24-kDa membrane-bound fragment (M(f)-zeta, >10-fold) expression. Both PKC-zeta and PKM-zeta exhibited intrinsic kinase activity, and substrate phosphorylation increased 4.5-fold. No change in cellular PKC-iota/PKM-iota expression occurred. The subcellular distribution of immunoreactive PKC-zeta changed significantly: neck cells lost their basal subcellular pole filamentous staining, whereas proliferating cell nuclear antigen-positive cells exhibited elevated cytoplasmic, lateral membrane, and nuclear staining. Subcellular fractionation revealed increased PKC-zeta and PKM-zeta expression and activity within nuclei, which preferentially accumulated PKM-zeta. These results suggest separate cellular and nuclear roles, respectively, for PKC-zeta in quiescent and mitotically active colonocytes. PKM-zeta may specifically act as a modulator of proliferation during TMCH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call