Abstract
Glutamatergic synaptic dysfunction has been proposed as a causal factor in portal-systemic encephalopathy. Increased in vitro and in vivo glutamate release and decreased glutamate binding to NMDA receptors were previously reported in the brains of portacaval-shunted rats. Such changes could lead to alterations in the second messenger systems coupled to glutamate receptors. As NMDA receptors have been shown to act via the nitric oxide/cyclic GMP second messenger system, we studied the activities of constitutive nitric oxide synthase (NOS) in the brains of rats following portacaval shunting. Results demonstrate that NOS activities are significantly increased in cerebellum (by 54%, p < 0.01), cerebral cortex (by 65%, p < 0.01), hippocampus (by 88%, p < 0.01), and striatum (by 64%, p < 0.01) of shunted rats compared with sham-operated controls. As L-arginine transport is a prerequisite for nitric oxide production, we also studied L-[3H]arginine transport into cerebellar and cerebral cortical synaptosomes prepared from the brains of portacaval-shunted and sham-operated rats. L-[3H]Arginine uptake was significantly increased (by approximately 50%, p < 0.01) in both cerebellum and cortex. Increased NOS activities of neuronal and/or astrocytic origin and the resultant increased production of nitric oxide in brain could be the consequence of increased NMDA receptor activation following portacaval shunting. Furthermore, increased nitric oxide production could contribute to the increased cerebral blood flow consistently observed following portacaval shunting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.