Abstract

At puberty, neurokinin B (NKB) and kisspeptin (Kiss1) may help to amplify GnRH secretion, but their precise roles remain ambiguous. We tested the hypothesis that NKB and Kiss1 are induced as a function of pubertal development, independently of the prevailing sex steroid milieu. We found that levels of Kiss1 mRNA in the arcuate nucleus (ARC) are increased prior to the age of puberty in GnRH/sex steroid-deficient hpg mice, yet levels of Kiss1 mRNA in wild-type mice remained constant, suggesting that sex steroids exert a negative feedback effect on Kiss1 expression early in development and across puberty. In contrast, levels of Tac2 mRNA, encoding NKB, and its receptor (NK3R; encoded by Tacr3) increased as a function of puberty in both wild-type and hpg mice, suggesting that during development Tac2 is less sensitive to sex steroid-dependent negative feedback than Kiss1. To compare the relative responsiveness of Tac2 and Kiss1 to the negative feedback effects of gonadal steroids, we examined the effect of estradiol (E(2)) on Tac2 and Kiss1 mRNA and found that Kiss1 gene expression was more sensitive than Tac2 to E(2)-induced inhibition at both juvenile and adult ages. This differential estrogen sensitivity was tested in vivo by the administration of E(2). Low levels of E(2) significantly suppressed Kiss1 expression in the ARC, whereas Tac2 suppression required higher E(2) levels, supporting differential sensitivity to E(2). Finally, to determine whether inhibition of NKB/NK3R signaling would block the onset of puberty, we administered an NK3R antagonist to prepubertal (before postnatal d 30) females and found no effect on markers of pubertal onset in either WT or hpg mice. These results indicate that the expression of Tac2 and Tacr3 in the ARC are markers of pubertal activation but that increased NKB/NK3R signaling alone is insufficient to trigger the onset of puberty in the mouse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.