Abstract

In the remnant kidney model of chronic renal failure, absolute reabsorption of Na+ in the proximal tubule of the remaining nephrons is increased over normal. Absolute proximal tubular reabsorption of bicarbonate and proximal tubular H+ excretion per nephron have also been shown to be increased over normal in his model of renal disease. Na+ uptake in membrane vesicles isolated from the brush border membrane of remnant kidneys of dogs with chronic renal failure is increased over uptake in membrane vesicles isolated from kidneys of normal dogs. In the present studies an amiloride-sensitive, electroneutral Na+-H+ exchanger was identified in canine renal brush border membrane vesicles. Na+ uptake in membrane vesicles in the presence of an initial H+ gradient (intravesicular pH less than extravesicular pH) was increased in membrane vesicles isolated from the remnant kidneys of dogs with chronic renal failure over that in membrane vesicles from kidneys of normal dogs. This increase was abolished by amiloride. It is possible that the alterations in Na+ and bicarbonate reabsorption and H+ excretion in the remnant kidney model of chronic renal failure can be explained on the basis of increased activity of the Na+-H+ exchanger in the renal brush border membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.