Abstract

There are at least two potentially counteracting effects of migration in host–pathogen metapopulations. On the one hand increased migration leads to increased colonization of empty habitats by healthy hosts; on the other hand migrants can carry infectious diseases to susceptible populations. Earlier metapopulation models have found that the beneficial effects of increasing migration (reduced infection) are likely to dominate, and a general recommendation for managers of endangered metapopulations has been to increase connectivity between habitat patches. We extend the model framework to simultaneously allow for (1) Allee effects in host colonization rate, (2) spillover of pathogens from a second host species, and (3) differential colonization success by infected and healthy hosts. We find that the dynamics of a host–pathogen system can be highly sensitive to increased migration rates. Allee effects make host populations vulnerable to spillover of pathogens from other hosts, and metapopulation extinction can emerge from seemingly stable situations of endemic coexistence. Increasing connectivity in endangered metapopulations can be a risky management action unless the details of the biology of the host–pathogen system are known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.