Abstract

Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.

Highlights

  • Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes

  • The relative rates of oxidation of the three peptides containing these Met residues are in agreement with earlier work based on chromatographic separation of intact apolipoprotein A-I (apoA-I) molecules containing Met(O)112 or Met(O)148 [42], which identified Met112 as the primary site of oxidation of HDL that had been chemically oxidized with chloramine-T

  • Met86 was identified as the major site of oxidation of apoA-I initiated by the aqueous peroxyl radical generator 2,2¶-azo-bis(2-amidinopropane)dihydrochloride

Read more

Summary

Introduction

Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q84M86-K88, W108-M112-R116, and L144-M148-R149. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N :-malondialdehyde-lysine or N :-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Increased methionine sulfoxide content of apoA-I in type 1 diabetes.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call