Abstract

The megalin/cubilin complex is responsible for the majority of serum protein reclamation in the proximal tubules. The current study examined if decreases in their renal expression, along with the albumin recycling protein neonatal Fc receptor (FcRn) could account for proteinuria/albuminuria in the Zucker diabetic fatty rat model of type 2 diabetes. Immunoblots of renal cortex samples obtained at worsening disease stages demonstrated no loss in megalin, cubilin, or FcRn, even when proteinuria was measured. Additionally, early diabetic rats exhibited significantly increased renal megalin expression when compared with controls (adjusted P < 0.01). Based on these results, the ability of insulin to increase megalin was examined in a clonal subpopulation of the opossum kidney proximal tubule cell line. Insulin treatments (24 h, 100 nM) under high glucose conditions significantly increased megalin protein ( P < 0.0001), mRNA ( P < 0.0001), and albumin endocytosis. The effect on megalin expression was prevented with inhibitors against key effectors of insulin intracellular signaling, phosphatidylinositide 3-kinase and Akt. Studies using rapamycin to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) resulted in a loss of insulin-induced megalin expression. However, subsequent evaluation demonstrated these effects were independent of initial mTORC1 suppression. The presented results provide insight into the expression of megalin, cubilin, and FcRn in type 2 diabetes, which may be impacted by elevated insulin and glucose. Furthermore, proximal tubule endocytic activity in early diabetics may be enhanced, a process that could have a significant role in proteinuria-induced renal damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.