Abstract

Eutrophication of surface waters and hypoxia in bottom waters has been increasing in many coastal areas, leading to very large depletions of marine life in the affected regions. These areas of high surface productivity and low bottom-water oxygen concentration are caused by increasing runoff of nutrients from land. Although the local ecological and socio-economic effects have received much attention, the potential contribution of increasing hypoxia to global-change phenomena is unknown. Here we report the intensification of one of the largest low-oxygen zones in the ocean, which develops naturally over the western Indian continental shelf during late summer and autumn. We also report the highest accumulations yet observed of hydrogen sulphide (H2S) and nitrous oxide (N2O) in open coastal waters. Increased N2O production is probably caused by the addition of anthropogenic nitrate and its subsequent denitrification, which is favoured by hypoxic conditions. We suggest that a global expansion of hypoxic zones may lead to an increase in marine production and emission of N2O, which, as a potent greenhouse gas, could contribute significantly to the accumulation of radiatively active trace gases in the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.