Abstract

Recurrent outbreaks of disease between 1980 and 1983 caused catastrophic mortality of sea urchins (>260,000 t fresh weight) along 280 km (straight line distance) of the Atlantic coast of Nova Scotia. The complete elimination of sea urchins and concomitant development of fleshy macroalgal communities have occurred along different parts of this coast in different years. Macroalgal communities in areas where sea urchins died off 1, 3 and 4 years previously are compared to existing sea urchin-dominated barren grounds and to a mature kelp bed without sea urchins. Changes in macroalgal cover and species composition, and increases in biomass, density and size of kelp (Laminaria) species, characterize the succession from barren grounds to 3- and 4-year-old kelp beds. The greatest change occurred between one and three years following sea urchin mass mortality. Within 3 years, kelp beds attained a level of biomass (7.6 kg m-2) comparable to that of mature beds. Recovery of sea urchin populations via recruitment of planktonic larvae has been slow and spatially variable. Large-scale reciprocal fluctuations in kelp and sea urchin biomass may characterize the trajectory of a dynamic system which cycles between two alternate community states: kelp beds and sea urchin-dominated barren grounds. Periodic decimation of sea urchin populations by disease may be an important mechanism underlying this cyclicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call