Abstract

A disrupted balance of reduced glutathione (GSH) and iron (Fe) and subsequent enhanced susceptibility of lysosomes of lung macrophages (LMs) to oxidants may play a role in lung fibrogenesis. We assessed cellular Fe/GSH, lysosomal membrane permeabilization (LMP), and cell death in cultures of oxidant exposed LMs. LMs from 7 lung fibrosis patients and healthy subjects were exposed to a physiologic concentration of H2O2 for 1 h. LMP was assessed with acridine orange green fluorescence, apoptosis/necrosis were estimated by apoptotic DNA and typical morphology, Fe was assessed with Prussian blue staining/atomic absorption spectrophotometry, and GSH was evaluated using a GSH assay kit. Oxidant-induced LMP and cell death were more pronounced in cultures of LMs from patients with lung fibrosis, and these cells contained less GSH and more cytochemically stained Fe. These observations indicate that LMP may be involved in fibrosis development, possibly through activation of the inflammasome complex. Further studies are warranted for a detailed understanding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call