Abstract

Dysregulation of fatty acid oxidation (FAO) is recognized as important in the pathophysiology of obesity and insulin resistance (IR). However, demonstrating FAO defects in vivo in humans has entailed complex and invasive methodologies. Recently, the identification of genetic blocks in FAO has been vastly simplified by using tandem mass spectrometry (MS/MS) of dried bloodspots to specify acylcarnitine (AcylCN) alterations characteristic for each disorder. This technology has recently been applied to examine FAO alterations in human and animal models of obesity and type 2 diabetes mellitus (T2DM). This study focused on characterizing AcylCN profiles in human plasma from individuals with obesity and T2DM during fasting and insulin-stimulated conditions. Following an overnight fast, plasma was obtained from lean (n = 12), obese nondiabetic (n = 14), and T2DM (n = 10) participants and analyzed for AcylCN using MS/MS. Plasma samples were also obtained at the end of a 4-h insulin-stimulated euglycemic clamp. In obesity and T2DM, long-chain AcylCNs were similarly significantly increased in the fasted state; free-CN levels were also elevated. Additionally, T2DM subjects of comparable BMI had increased short- and medium-chain AcylCNs, both saturated and hydroxy, as well as increased C(4)-dicarboxylcarnitine (C(4)DC-CN) that correlated with an index of poor glycemic control (HbA(1c); r = 0.74; P < 0.0001). Insulin infusion reduced all species of plasma AcylCN but this reduction was blunted in T2DM. Plasma long-chain AcylCN species are increased in obesity and T2DM, suggesting that more fatty acids can enter mitochondria. In T2DM, many shorter species accumulate, suggesting that they have a generalized complex oxidation defect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.