Abstract
A balance between zinc uptake by ZIP (SLC39) and efflux of zinc from the cytoplasm into subcellular organelles and out of the cell by ZnT (SLC30) transporters is crucial for zinc homeostasis. It is not clear whether normal and cancerous pancreatic cells respond differently to increased extracellular zinc concentrations. Use of flow cytometry-based methods revealed that treatment with as little as 0.01 mM zinc induced significant cytotoxicity in two human ductal adenocarcinoma cell lines. In contrast, normal human pancreatic islet cells tolerated as high as 0.5 mM zinc. Insulinoma cell lines of mouse and rat origin also succumbed to high concentrations of zinc. Exposure to elevated zinc concentrations enhanced the numbers of carcinoma but not primary islet cells staining with the cell-permeable zinc-specific fluorescent dye, FluoZin-3, indicating increased zinc influx in transformed cells. Mitochondrial membrane depolarization, superoxide generation, decreased antioxidant thiols, intracellular acidosis and activation of intracellular caspases characterized zinc-induced carcinoma cell death. Only the antioxidant glutathione but not inhibitors of enzymes implicated in apoptosis or necrosis prevented zinc-induced cytotoxicity in insulinoma cells. Immunoblotting revealed that zinc treatment increased the ubiquitination of proteins in cancer cells. Importantly, zinc treatment up-regulated the expression of ZnT-1 gene in a rat insulinoma cell line and in two human ductal adenocarcinoma cell lines. These results indicate that the exposure of pancreatic cancer cells to elevated extracellular zinc concentrations can lead to cytotoxic cell death characterized by increased protein ubiquitination and up-regulation of the zinc transporter ZnT-1 gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.