Abstract

Large explosive eruptions can bury landscapes beneath thick layers of tephra. Rivers subsequently overloaded with excess pyroclastic sediments have some of the highest reported specific sediment yields. Much less is known about how hillslopes respond to tephra loads. Here, we report a pulsed and distinctly delayed increase in landslide activity following the eruptions of the Chaiten (2008) and Puyehue–Cordon Caulle (2011) volcanoes in southern Chile. Remote-sensing data reveal that landslides clustered in densely forested hillslopes mostly two to six years after being covered by tephra. This lagged instability is consistent with a gradual loss of shear strength of decaying tree roots in areas of high tephra loads. Surrounding areas with comparable topography, forest cover, rainfall and lithology maintained landslide rates roughly ten times lower. The landslides eroded the landscape by up to 4.8 mm on average within 30 km of both volcanoes, mobilizing up to 1.6 MtC at rates of about 265 tC km–2 yr–1. We suggest that these yields may reinforce the elevated river loads of sediment and organic carbon in the decade after the eruptions. We recommend that studies of post-eruptive mass fluxes and hazards include lagged landslide responses of tephra-covered forested hillslopes, to avoid substantial underestimates. A delayed increase of landslide activity occurred about two to six years after two volcanic eruptions in Chile in 2008 and 2011, according to remote-sensing data. The time lag is consistent with decaying tree roots in areas covered by tephra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call