Abstract

ObjectivesMeniere’s disease is thought to be pathophysiologically due to increased pressure in the endolymphatic spaces leading to distortion of the sensory elements. As the inner ear fluids are in direct and indirect contact with cerebrospinal fluid (CSF), it was hypothesized that changes in CSF hydrodynamics could affect inner ear fluid pressures.Patients and MethodsThis study was conducted on 150 patients presenting with benign increased intracranial tension diagnosed by Dandy’s criteria and by radiological data. All patients were subjected to a detailed vertigo questionnaire and underwent comprehensive clinical, audiological, and vestibular testing to detect any vestibular abnormalities.ResultsOf the studied patients, 38 (25.3%) (34 females and four males) presented with audiovestibular symptoms: ear fullness and/or hearing loss, tinnitus, attacks of vertigo, and instability. Some patients reported atypical positional or motion-induced vertigo. A total of 13 patients presented with sensorineural hearing loss (SNHL). Clinical head impulse test (HIT) was positive in 30 patients, abnormal caloric test results in 24 patients, and 12 had positive Dix–Hallpike test results. All patients with audiovestibular symptoms were previously treated with betahistine (24 mg, three times a day) with poor response. Patients with abnormal test results were shifted to acetazolamide+betahistine. Thirty patients had a dramatic response on both audiological and vestibular manifestations.ConclusionChanges in CSF pressure significantly affect inner ear fluids in some patients. Symptoms and tests may mimic Meniere’s disease, and we recommend evaluating patients with atypical Meniere’s disease (MD), especially early bilateral affection and/or poor response to conventional therapy, for increased intracranial tension (ICT). Further testing of other cochlea-vestibular functions in these patients is under way.

Highlights

  • Proper function of the inner ear depends on the delicate balance between inner ear fluids

  • It can lead to changes in middle ear compliance, cochlear microphonics, and DPOAE [2,3,4,5,6,7]

  • Perilymphatic pressure is directly transmitted to the endolymph via the thin Reissner’s membrane; the pressure difference between endolymph and perilymph is less than 0.5 mmHg, and both perilymphatic and endolymphatic pressures can be considered equivalent to the inner ear pressure [8,9]

Read more

Summary

Introduction

Proper function of the inner ear depends on the delicate balance between inner ear fluids. Perilymphatic pressure is directly transmitted to the endolymph via the thin Reissner’s membrane; the pressure difference between endolymph and perilymph is less than 0.5 mmHg, and both perilymphatic and endolymphatic pressures can be considered equivalent to the inner ear pressure [8,9]. Intracranial pressure (ICP) has been shown to influence the perilymphatic pressure [10,11,12], because the cranial cerebrospinal fluid (CSF) and inner ear intralabyrinthine fluid communicate through three routes: the vestibular aqueduct, the cochlear aqueduct, and the internal auditory canal [13,14]. Inner ear pressure can mirror ICP, and this may play a key role in inner ear pressure regulation and fluid homeostasis and may be related to inner ear diseases [15,16]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.