Abstract

There are substantial changes in skeletal and mineral metabolism during pregnancy and lactation. The purpose of this study was to determine the changes in intracortical bone remodeling and turnover during lactation in beagle dogs. A femur and rib were obtained from dogs near the end of lactation or soon after weaning and compared with nonlactating controls. Rib cortical bone had much higher bone turnover rates than did femoral diaphyseal cortical bone. The number of single-labeled osteons and the number of resorption spaces were significantly greater during lactation in both the rib and the femur. Additionally, the mineral apposition rate, basic multicellular unit activation frequency, and bone turnover rates were greater in the femoral cortical bone from the lactating dogs than from the controls. These data demonstrate that during lactation, intracortical bone remodeling increases, and this may provide a mechanism for the skeleton to be responsive to the calcium requirements of the mother. In addition, these data may help explain the transient decreases in cortical bone mineral density that are reported to occur during human lactation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call