Abstract

A murine endotoxemia model and cultured Calu-3 monolayers were used to test the hypothesis that excessive nitric oxide (NO) production secondary to induction of inducible NO synthase (iNOS) is a key factor leading to altered tight junction (TJ) protein expression and function in the pulmonary epithelium. C57Bl/6J mice were injected with either Escherichia coli 0111:B4 lipopolysaccharide (LPS; 2 mg/kg) or vehicle. Twelve hours later, leakage of FITC-dextran (M(r) 4 kDa; FD4) from blood into bronchoalveolar lavage fluid was significantly increased in endotoxemic but not control mice. This decrease in bronchoalveolar barrier function was associated with upregulation of iNOS protein expression and NF-kappaB activation in lung tissue. Expression of the TJ proteins, zonula occludens (ZO)-1, ZO-2, ZO-3, and occludin, as assessed by immunoblotting and/or immunofluorescence, decreased in lung after the injection of mice with LPS. Treatment of endotoxemic mice with an isoform-selective iNOS inhibitor [l-N(6)-(1-iminoethyl)lysine; l-NIL] ameliorated LPS-induced changes in TJ protein expression and preserved bronchoalveolar epithelial barrier function. Incubating Calu-3 bronchiolar epithelial monolayers with cytomix (a mixture of 1,000 U/ml IFN-gamma, 10 ng/ml TNF-alpha, and 1 ng/ml IL-1beta) increased permeability to FD4, but adding l-NIL prevented this effect. These results suggest that decreased expression and mistargeting of TJ proteins in lung after systemic inflammation may be NO dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.