Abstract

Stroke occurs mostly in patients with advanced age. Elderly patients have a less favorable prognosis compared with young adult patients. To understand the underlying mechanisms, we tested our hypothesis that an increased inflammatory response to acute ischemic injury in old stroke mice leads to more severe brain damage and behavioral dysfunction. An ischemic stroke model was created in 2- and 12-month-old C57BL/6 mice through permanent occlusion of the left distal middle cerebral artery (dMCAO). Infarct/atrophy volumes were quantified by staining the brain sections with Cresyl Violet. Sensorimotor function was assessed using the corner test and adhesive removal test. Quantification of CD68+ cells in the peri-infarct region was performed at 1, 3 and 14 days after dMCAO. Interleukin-6 (IL-6), interleukin-1 β (IL-1β) and vascular endothelial growth factor (VEGF) levels in the ischemic brain tissue were measured using ELISA. Western blot was used to determine the expression levels of tight junction proteins, claudin-5 and zonula occludens (ZO)-1. Blood-brain barrier permeability was measured by Evans blue (EB) extravasation. Gelatinase B (MMP-9, type IV collagenase) was measured by gel zymography. Compared to 2-month-old mice, 12-month-old mice had more severe behavioral deficits at both the acute and chronic stages of stroke. Compared with the 2-month-old mice, 12-month-old mice had larger infarct/atrophy volumes at 1 and 14 days after dMCAO, higher levels of IL-6 and IL-1β, higher MMP9 activity, and lower levels of claudin-5 and ZO-1 at 1 and 3 days after dMCAO. 12-month-old mice also had more CD68+ cells in the peri-infarct region at 1, 3 and 14 days after dMCAO and more EB leakage at 3 days after dMCAO. A higher inflammatory response at the acute stage of ischemic stroke in old mice is associated with more severe neuronal injury and long-term behavioral dysfunction.

Highlights

  • Stroke occurs mostly in patients with advanced age

  • To better understand the underlying mechanisms of how aging affects functional recovery of ischemic stroke victims, we examined the hypothesis that an increased inflammatory response to acute ischemic injury in old mice leads to more severe brain damage and a less favorable prognosis

  • Old mice had more severe functional deficits than young mice after ischemic stroke First, we investigated functional recovery after focal cerebral ischemia using the adhesive removal test and corner test

Read more

Summary

Introduction

Stroke occurs mostly in patients with advanced age. Elderly patients have a less favorable prognosis compared with young adult patients. To understand the underlying mechanisms, we tested our hypothesis that an increased inflammatory response to acute ischemic injury in old stroke mice leads to more severe brain damage and behavioral dysfunction. A higher inflammatory response at the acute stage of ischemic stroke in old mice is associated with more severe neuronal injury and long-term behavioral dysfunction. Inflammatory response increased in old ischemic brain systemic inflammatory cytokines such as IL-1β and TNFα [6]. The agedependent role of inflammation associated with increased ischemic brain injury has not been fully elucidated. To better understand the underlying mechanisms of how aging affects functional recovery of ischemic stroke victims, we examined the hypothesis that an increased inflammatory response to acute ischemic injury in old mice leads to more severe brain damage and a less favorable prognosis

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.