Abstract

Increased intracranial pressure (ICP) is a pathological feature of many neurological diseases; however, the local and systemic sequelae of raised ICP are incompletely understood. Using an experimental paradigm, we aimed to describe the cerebrovascular consequences of acute increases in ICP. We assessed cerebral haemodynamics [mean arterial blood pressure (MAP), ICP, laser Doppler flowmetry (LDF), basilar artery Doppler flow velocity (Fv) and estimated vascular wall tension (WT)] in 27 basilar artery-dependent rabbits during experimental (artificial lumbar CSF infusion) intracranial hypertension. WT was estimated as the difference between critical closing pressure and ICP. From baseline (~9 mmHg) to moderate increases in ICP (~41 mmHg), cortical LDF decreased (from 100 to 39.1%, p < 0.001), while mean global Fv was unchanged (from 47 to 45 cm/s, p = 0.38). In addition, MAP increased (from 88.8 to 94.2 mmHg, p < 0.01 and WT decreased (from 19.3 to 9.8 mmHg, p < 0.001). From moderate to high ICP (~75 mmHg), both global Fv and cortical LDF decreased (Fv, from 45 to 31.3 cm/s, p < 0.001; LDF, from 39.1 to 13.3%, p < 0.001) while MAP increased further (94.2 to 114.5 mmHg, p < 0.001) and estimated WT was unchanged (from 9.7 to 9.6 mmHg, p = 0.35). In this analysis, we demonstrate a cortical vulnerability to increases in ICP and two ICP-dependent cerebro-protective mechanisms: with moderate increases in ICP, WT decreases and MAP increases to buffer cerebral perfusion, while with severe increases of ICP, an increased MAP predominates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call