Abstract
1. The acute ventilatory response to 3 min periods of hypoxia (AHR) was examined in nine patients with clinically complete spinal cord transection (T4-T7) during (a) rest and (b) electrically induced leg exercise (EEL). 2. EEL was produced by surface electrode stimulation of the quadriceps muscles so as to cause the legs to extend at the knee against gravity. End-tidal PCO2 was held constant 1-2 mmHg above resting values throughout both protocols. 3. On exercise, the average increase in metabolic CO2 production (VCO2 +/- S.E.M.) was 41 +/- 5 ml min-1. Venous lactate levels did not rise with exercise. 4. Baseline euoxic ventilation did not increase significantly with EEL, but there was a consistent and highly significant increase in the ventilatory response to hypoxia during EEL (mean delta AHR +/- S.E.M. of 1.6 +/- 0.21 min-1). 5. We conclude that an increase in hypoxic sensitivity during exercise can occur in the absence of volitional control of exercise and in the absence of afferent neural input from the limbs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.