Abstract

ObjectiveThis study aimed to identify the disease‐causing mutation of congenital cataract disease in a large northeastern Chinese family.Materials and MethodsThe subjects’ peripheral blood was collected, their genomic DNA was extracted, mutation screening of candidate genes was performed using polymerase chain reaction, and the amplified products were sequenced. Recombinant C‐terminal enhanced green fluorescent protein‐tagged wild‐type or mutant CRYGD was expressed in HEK293T cells, and the expression pattern was observed under a fluorescence microscope. The CRYGD protein mutation was analyzed via bioinformatics analysis.Resultsc.475delG, a novel frameshift mutation in CRYGD, was identified in the affected family members. This mutation causes premature termination of the polypeptide, resulting in truncated p.(Ala159ProfsTer9). According to the bioinformatics analysis results, compared with wild‐type CRYGD, p.(Ala159ProfsTer9) exhibits significantly decreased hydrophilicity. Fluorescence microscopy revealed that p.(Ala159ProfsTer9) aggregates in the cell in the form of granular deposits.ConclusionIn this study, the novel frameshift mutation c.475delG, p.(Ala159ProfsTer9) in CRYGD was identified to cause congenital cataracts in a large Chinese family; increased hydrophobicity of p.(Ala159ProfsTer9) protein may be the underlying mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call