Abstract
BackgroundThe objective of this study was to determine whether the cataract-related G18V variant of human γS-crystallin has increased exposure of hydrophobic residues that could explain its aggregation propensity and/or recognition by αB-crystallin. MethodsWe used an ANS fluorescence assay and NMR chemical shift perturbation to experimentally probe exposed hydrophobic surfaces. These results were compared to flexible docking simulations of ANS molecules to the proteins, starting with the solution-state NMR structures of γS-WT and γS-G18V. ResultsγS-G18V exhibits increased ANS fluorescence, suggesting increased exposed hydrophobic surface area. The specific residues involved in ANS binding were mapped by NMR chemical shift perturbation assays, revealing ANS binding sites in γS-G18V that are not present in γS-WT. Molecular docking predicts three binding sites that are specific to γS-G18V corresponding to the exposure of a hydrophobic cavity located at the interdomain interface, as well as two hydrophobic patches near a disordered loop containing solvent-exposed cysteines, all but one of which is buried in γS-WT. ConclusionsAlthough both proteins display non-specific binding, more residues are involved in ANS binding to γS-G18V, and the affected residues are localized in the N-terminal domain and the nearby interdomain interface, proximal to the mutation site. General significanceCharacterization of changes in exposed hydrophobic surface area between wild-type and variant proteins can help elucidate the mechanisms of aggregation propensity and chaperone recognition, presented here in the context of cataract formation. Experimental data and simulations provide complementary views of the interactions between proteins and the small molecule probes commonly used to study aggregation. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - General Subjects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.