Abstract

The purpose of this study was to determine whether the gain in soleus H-reflex excitability induced by unilateral lower limb suspension (ULLS) is associated with changes in neural drive to the plantar flexor muscles. Six male subjects (23 ± 2 years, 187 ± 7 cm, 79 ± 9 kg) underwent 24 days of ULLS of the dominant limb. Plantar flexor maximal voluntary contraction (MVC) torque, activation capacity (twitch interpolation), soleus maximal electromyographic (EMG) activity, Hoffman (H)-reflex, and the first volitional (V) wave normalized to the compound muscle action potential (M-wave) were quantified before and after ULLS. Following ULLS, MVC torque decreased by 15% (P < 0.05). However, neither activation capacity nor EMG activity was significantly altered after the suspension. The V-wave remained unchanged consistently after ULLS, whereas the H-reflex increased significantly (+20%). Furthermore, there was no significant relationship between changes in H-reflex and V-wave over the ULLS period. These findings indicate that 24 days of ULLS can result in a substantial reduction of muscle strength without any apparent change in voluntary activation capacity. H-reflex and V-wave findings suggest that the spinal adaptations that underlie the unloading-induced increase in resting soleus H-reflex excitability did not significantly affect the efferent motor output to the plantar flexor muscles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call