Abstract

Uncoupling protein-2 (UCP2) is a mitochondrial inner-membrane carrier protein that is involved in the control of fatty acid metabolism. To understand the mechanism of the transcriptional regulation of ucp2 in the pathogenesis of nonalcoholic steatohepatitis (NASH), we cloned 500 bp upstream of the ucp2 exon 1 from a rat liver cDNA library and identified cis-acting regulatory elements. The transcriptional start site was identified as "C," -359 bp from the ATG codon. A reporter gene assay showed that deletion of the nucleotide sequence between -264 and -60 bp resulted in a significant decrease in promoter activity in HepG2 and H4IIE cells. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) revealed that the increase in promoter activity is related to an enhanced ability of Sp1 to bind to its motifs at -84 to -61 bp within the ucp2 proximal promoter. Overexpression of exogenous Sp1 in H4IIE cells also increased the promoter activity. We demonstrated that the expression of UCP2 mRNA and protein is markedly increased in rats with nonalcoholic steatohepatitis (NASH). Coincidently, levels of Sp1 binding to -84/-61 bp were also increased. Overall, our data indicate that the Sp1-binding site located at the proximal promoter is involved in the regulation of rat UCP2 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.