Abstract

In an effort to quantify the importance of hydrogen bonding and α-helix formation to protein stability, a capping box motif was introduced into the small phosphocarrier protein HPr. Previous studies had confirmed that Ser46, at the N-cap position of the short helix-B in HPr, serves as an N-cap in solution. Thus, only a single-site mutation was required to produce a canonical S-X-X-E capping box: Lys49 at the N3 position was substituted with a glutamic acid residue. Thermal and chemical denaturation studies on the resulting K49E HPr show that the designed variant is ≈2 kcal mol−1more stable than the wild-type protein. However, NMR studies indicate that the side-chain of Glu49 does not participate in the expected capping H-bond interaction, but instead forms a new tertiary H-bond that links helix-B to the four-stranded β-sheet of HPr. Here, we demonstrate that a strategy in which new non-native H-bonds are introduced can generate proteins with increased stability. We discuss why the original capping box design failed, and compare the energetic consequences of the new tertiary side-chain to main-chain H-bond with a local (helix-capping) side-chain to main-chain H-bond on the protein’s global stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.