Abstract

Huntington's disease (HD) is a progressive neurodegenerative disease characterized by a severe neuronal loss that occurs primarily in the neostriatum. It has been postulated that mitochondria dysfunction and oxidative stress may play significant roles in the etiology of the disease. Indeed, markers of oxidative stress damage have been detected in the brains of HD patients and in mouse models of HD. In this study, we evaluate the changes in the levels of the potent, endogenous antioxidant glutathione and enzymes involved in its metabolism or recycling in the cortex and striatum of an extensively studied HD mouse model (R6/2). In both cortex and striatum, the levels of cellular glutathione were not significantly different in the R6/2 mice when compared with littermate wild type controls. Remarkably, the levels of glutathione were significantly increased in mitochondria isolated from the cortex and striatum of R6/2 mice when compared with wild type control mice. This specific increase in the levels of glutathione in mitochondria suggests that a compensatory mechanism is induced in the R6/2 mice to protect against an increase in oxidative stress in mitochondria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.