Abstract
Fabry disease is a lysosomal storage disorder caused by an α-galactosidase A (α-Gal A) deficiency and resulting in the accumulation of glycosphingolipids, predominantly globotriaosylceramide (Gb3). A transgenic mouse expressing the human α-Gal A R301Q mutant in an α-Gal A-knockout background (TgM/KO) should be useful for studying active-site-specific chaperone (ASSC) therapy for Fabry disease. However, the Gb3 content in the heart tissue of this mouse was too low to detect an ASSC-induced effect. To increase the Gb3 levels in mouse organs, we created transgenic mice (TgG3S) expressing human α1,4-galactosyltransferase (Gb3 synthase). High levels of Gb3 were observed in all major organs of the TgG3S mouse. A TgG3S (+/-)M(+/-)/KO mouse was prepared by cross-breeding the TgG3S and TgM/KO mice and the Gb3 content in the heart of the TgG3S(+/-)M(+/-)/KO mouse was 1.4 µg/mg protein, higher than in the TgM(+/-)/KO (<0.1 µg/mg protein). Treatment with an ASSC, 1-deoxygalactonojirimycin, caused a marked induction of α-Gal A activity and a concomitant reduction of the Gb3 content in the TgG3S(+/-) M(+/-)/KO mouse organs. These data indicated that the TgG3S(+/-) M(+/-)/KO mouse was suitable for studying ASSC therapy for Fabry disease, and that the TgG3S mouse would be useful for studying the effect of high Gb3 levels in mouse organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.