Abstract

The cyclopentenone prostaglandin (CyPG) J₂ series, including prostaglandin J₂ (PGJ₂), Δ¹²-PGJ₂, and 15-deoxy-∆¹²,¹⁴-prostaglandin J₂ (15d-PGJ₂), are active metabolites of PGD₂, exerting multiple effects on neuronal function. However, the physiologic relevance of these effects remains uncertain as brain concentrations of CyPGs have not been precisely determined. In this study, we found that free PGD₂ and the J₂ series CyPGs (PGJ₂, Δ¹²-PGJ₂, and 15d-PGJ₂) were increased in post-ischemic rat brain as detected by UPLC-MS/MS with 15d-PGJ₂ being the most abundant CyPG. These increases were attenuated by pre-treating with the cyclooxygenase (COX) inhibitor piroxicam. Next, effects of chronic exposure to 15d-PGJ₂ were examined by treating primary neurons with 15d-PGJ₂, CAY10410 (a 15d-PGJ₂ analog lacking the cyclopentenone ring structure), or vehicle for 24 to 96 h. Because we found that the concentration of free 15d-PGJ₂ decreased rapidly in cell culture medium, freshly prepared medium containing 15d-PGJ₂, CAY10410, or vehicle was changed twice daily to maintain steady extracellular concentrations. Incubation with 2.5 μM 15d-PGJ₂, but not CAY10410, increased the neuronal cell death without the induction of caspase-3 or PARP cleavage, consistent with a primarily necrotic mechanism for 15d-PGJ₂-induced cell death which was further supported by TUNEL assay results. Ubiquitinated protein accumulation and aggregation was observed after 96 h 15d-PGJ₂ incubation, accompanied by compromised 20S proteasome activity. Unlike another proteasome inhibitor, MG132, 15d-PGJ₂ treatment did not activate autophagy or induce aggresome formation. Therefore, the cumulative cytotoxic effects of increased generation of CyPGs after stroke may contribute to delayed post-ischemic neuronal injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call