Abstract

We have previously generated transgenic cattle with additional copies of bovine β- and κ casein genes. An initial characterisation of milk produced with a hormonally induced lactation from these transgenic cows showed an altered milk composition with elevated β-casein levels and twofold increased κ-casein content. Here we report the first in-depth characterisation of the composition of the enriched casein milk that was produced through a natural lactation. We have analyzed milk from the high expressing transgenic line TG3 for milk composition at early, peak, mid and late lactation. The introduction of additional β- and κ-casein genes resulted in the expected expression of the transgene derived proteins and an associated reduction in the size of the casein micelles. Expression of the transgenes was associated with complex changes in the expression levels of other milk proteins. Two other major milk components were affected, namely fat and micronutrients. In addition, the sialic acid content of the milk was increased. In contrast, the level of lactose remained unchanged. This novel milk with its substantially altered composition will provide insights into the regulatory processes synchronizing the synthesis and assembly of milk components, as well as production of potentially healthier milk with improved dairy processing characteristics.

Highlights

  • Artificially before puberty through the application of a hormonal treatment regime, precluded an in-depth analysis of its composition

  • We have previously reported the generation of the transgenic cattle line TG3, harbouring additional genes for bovine β- and κ-casein and described their expression potential deduced from a hormonally induced lactation[16]

  • The relatively high abundance of κ-casein B resulted in a more pronounced representation of the glycosylated κ-casein isoforms in the natural milk sample from the TG3 cows compared to the induced milk

Read more

Summary

Introduction

Artificially before puberty through the application of a hormonal treatment regime, precluded an in-depth analysis of its composition. We have reported on the processing of the milk from these transgenic cows into cheese[17]. We report the first analysis of the effects of the expression of the additional milk protein genes on the abundance and degree of post-translational modification of individual milk proteins, micronutrient composition, and micelle characteristics in milk from a naturally induced lactation following calving. The results show that expression of the additional casein genes results in several changes, some of which have potential relevance for human health or dairy processing

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.