Abstract

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, and the underlying molecular mechanisms of this neurodegenerative disorder are still unclear. γ-Aminobutyric acid (GABA) neurons play an essential role in the excitatory/inhibitory (E/I) balance in the brain, and the GABAergic system may contribute to the pathogenesis of AD. We used human induced pluripotent stem cells (iPSCs) generated from sporadic AD (SAD) patients to analyze the phenotype and transcriptional profiles of SAD iPSC-derived neural cells. We observed reduced neurogenesis and increased astrogenesis in SAD neural differentiation. We discovered elevated levels of GABA, glutamate decarboxylase 67 (GAD67), and vesicular GABA transporter (vGAT) in SAD neurons that indicated increased GABAergic development. Gene expression profiling of SAD neural cultures showed upregulation of the GABAergic signaling pathway and downregulation of the neurogenesis pathway. We presumed that the GABAergic transmission system might be enhanced in SAD neurons, as an early pathological change of SAD, which provides a novel target and new direction for the development of more effective therapeutic strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.